Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glutaredoxin: role in reversible protein s-glutathionylation and regulation of redox signal transduction and protein translocation.

Identifieur interne : 000D70 ( Main/Exploration ); précédent : 000D69; suivant : 000D71

Glutaredoxin: role in reversible protein s-glutathionylation and regulation of redox signal transduction and protein translocation.

Auteurs : Melissa D. Shelton [États-Unis] ; P Boon Chock ; John J. Mieyal

Source :

RBID : pubmed:15706083

Descripteurs français

English descriptors

Abstract

Reversible posttranslational modifications on specific amino acid residues can efficiently regulate protein functions. O-Phosphorylation is the prototype and analogue to the rapidly emerging mechanism of regulation known as S-glutathionylation. The latter is being recognized as a potentially widespread form of modulation of the activities of redox-sensitive thiol proteins, especially those involved in signal transduction pathways and translocation. The abundance of reduced glutathione in cells and the ready conversion of sulfenic acids and S-nitroso derivatives to S-glutathione mixed disulfides support the notion that reversible S-glutathionylation is likely to be the preponderant mode of redox signal transduction. The glutaredoxin enzyme has served as a focal point and important tool for evolution of this regulatory mechanism because of its characterization as a specific and efficient catalyst of protein-SSG de-glutathionylation (akin to phosphatases). Identification of specific mechanisms and enzyme(s) that catalyze formation of protein-SSG intermediates, however, is largely unknown and represents a prime objective for furthering understanding of this evolving mechanism of cellular regulation. Several proteomic approaches, including the use of cysteine-reactive fluorescent and radiolabel probes, have been developed to detect arrays of proteins whose cysteine residues are modified in response to oxidants, thus identifying them as potential interconvertible proteins to be regulated by redox signaling (glutathionylation). Specific criteria were used to evaluate current data on cellular regulation via S-glutathionylation. Among many proteins under consideration, actin, protein tyrosine phosphatase-1B, and Ras stand out as the best current examples for establishing this regulatory mechanism.

DOI: 10.1089/ars.2005.7.348
PubMed: 15706083


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glutaredoxin: role in reversible protein s-glutathionylation and regulation of redox signal transduction and protein translocation.</title>
<author>
<name sortKey="Shelton, Melissa D" sort="Shelton, Melissa D" uniqKey="Shelton M" first="Melissa D" last="Shelton">Melissa D. Shelton</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, School of Medicine, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH 44106-4965, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, School of Medicine, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH 44106-4965</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chock, P Boon" sort="Chock, P Boon" uniqKey="Chock P" first="P Boon" last="Chock">P Boon Chock</name>
</author>
<author>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005 Mar-Apr</date>
<idno type="RBID">pubmed:15706083</idno>
<idno type="pmid">15706083</idno>
<idno type="doi">10.1089/ars.2005.7.348</idno>
<idno type="wicri:Area/Main/Corpus">000E26</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000E26</idno>
<idno type="wicri:Area/Main/Curation">000E26</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000E26</idno>
<idno type="wicri:Area/Main/Exploration">000E26</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glutaredoxin: role in reversible protein s-glutathionylation and regulation of redox signal transduction and protein translocation.</title>
<author>
<name sortKey="Shelton, Melissa D" sort="Shelton, Melissa D" uniqKey="Shelton M" first="Melissa D" last="Shelton">Melissa D. Shelton</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, School of Medicine, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH 44106-4965, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, School of Medicine, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH 44106-4965</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chock, P Boon" sort="Chock, P Boon" uniqKey="Chock P" first="P Boon" last="Chock">P Boon Chock</name>
</author>
<author>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
</author>
</analytic>
<series>
<title level="j">Antioxidants & redox signaling</title>
<idno type="ISSN">1523-0864</idno>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Glutaredoxins (MeSH)</term>
<term>Glutathione (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidoreductases (physiology)</term>
<term>Protein Processing, Post-Translational (MeSH)</term>
<term>Protein Transport (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Glutarédoxines (MeSH)</term>
<term>Glutathion (métabolisme)</term>
<term>Maturation post-traductionnelle des protéines (MeSH)</term>
<term>Oxidoreductases (physiologie)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
<term>Transport des protéines (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutathione</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutathion</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Oxidation-Reduction</term>
<term>Protein Processing, Post-Translational</term>
<term>Protein Transport</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Glutarédoxines</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Oxydoréduction</term>
<term>Transduction du signal</term>
<term>Transport des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Reversible posttranslational modifications on specific amino acid residues can efficiently regulate protein functions. O-Phosphorylation is the prototype and analogue to the rapidly emerging mechanism of regulation known as S-glutathionylation. The latter is being recognized as a potentially widespread form of modulation of the activities of redox-sensitive thiol proteins, especially those involved in signal transduction pathways and translocation. The abundance of reduced glutathione in cells and the ready conversion of sulfenic acids and S-nitroso derivatives to S-glutathione mixed disulfides support the notion that reversible S-glutathionylation is likely to be the preponderant mode of redox signal transduction. The glutaredoxin enzyme has served as a focal point and important tool for evolution of this regulatory mechanism because of its characterization as a specific and efficient catalyst of protein-SSG de-glutathionylation (akin to phosphatases). Identification of specific mechanisms and enzyme(s) that catalyze formation of protein-SSG intermediates, however, is largely unknown and represents a prime objective for furthering understanding of this evolving mechanism of cellular regulation. Several proteomic approaches, including the use of cysteine-reactive fluorescent and radiolabel probes, have been developed to detect arrays of proteins whose cysteine residues are modified in response to oxidants, thus identifying them as potential interconvertible proteins to be regulated by redox signaling (glutathionylation). Specific criteria were used to evaluate current data on cellular regulation via S-glutathionylation. Among many proteins under consideration, actin, protein tyrosine phosphatase-1B, and Ras stand out as the best current examples for establishing this regulatory mechanism.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15706083</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>06</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1523-0864</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<Issue>3-4</Issue>
<PubDate>
<MedlineDate>2005 Mar-Apr</MedlineDate>
</PubDate>
</JournalIssue>
<Title>Antioxidants & redox signaling</Title>
<ISOAbbreviation>Antioxid Redox Signal</ISOAbbreviation>
</Journal>
<ArticleTitle>Glutaredoxin: role in reversible protein s-glutathionylation and regulation of redox signal transduction and protein translocation.</ArticleTitle>
<Pagination>
<MedlinePgn>348-66</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Reversible posttranslational modifications on specific amino acid residues can efficiently regulate protein functions. O-Phosphorylation is the prototype and analogue to the rapidly emerging mechanism of regulation known as S-glutathionylation. The latter is being recognized as a potentially widespread form of modulation of the activities of redox-sensitive thiol proteins, especially those involved in signal transduction pathways and translocation. The abundance of reduced glutathione in cells and the ready conversion of sulfenic acids and S-nitroso derivatives to S-glutathione mixed disulfides support the notion that reversible S-glutathionylation is likely to be the preponderant mode of redox signal transduction. The glutaredoxin enzyme has served as a focal point and important tool for evolution of this regulatory mechanism because of its characterization as a specific and efficient catalyst of protein-SSG de-glutathionylation (akin to phosphatases). Identification of specific mechanisms and enzyme(s) that catalyze formation of protein-SSG intermediates, however, is largely unknown and represents a prime objective for furthering understanding of this evolving mechanism of cellular regulation. Several proteomic approaches, including the use of cysteine-reactive fluorescent and radiolabel probes, have been developed to detect arrays of proteins whose cysteine residues are modified in response to oxidants, thus identifying them as potential interconvertible proteins to be regulated by redox signaling (glutathionylation). Specific criteria were used to evaluate current data on cellular regulation via S-glutathionylation. Among many proteins under consideration, actin, protein tyrosine phosphatase-1B, and Ras stand out as the best current examples for establishing this regulatory mechanism.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shelton</LastName>
<ForeName>Melissa D</ForeName>
<Initials>MD</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, School of Medicine, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH 44106-4965, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chock</LastName>
<ForeName>P Boon</ForeName>
<Initials>PB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mieyal</LastName>
<ForeName>John J</ForeName>
<Initials>JJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>1P01 AG 15885</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>1R01 AG 024413</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>5T32 EY07157</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Antioxid Redox Signal</MedlineTA>
<NlmUniqueID>100888899</NlmUniqueID>
<ISSNLinking>1523-0864</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="Y">Protein Processing, Post-Translational</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="Y">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<NumberOfReferences>119</NumberOfReferences>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>6</Month>
<Day>11</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15706083</ArticleId>
<ArticleId IdType="doi">10.1089/ars.2005.7.348</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Ohio</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Chock, P Boon" sort="Chock, P Boon" uniqKey="Chock P" first="P Boon" last="Chock">P Boon Chock</name>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
</noCountry>
<country name="États-Unis">
<region name="Ohio">
<name sortKey="Shelton, Melissa D" sort="Shelton, Melissa D" uniqKey="Shelton M" first="Melissa D" last="Shelton">Melissa D. Shelton</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D70 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000D70 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15706083
   |texte=   Glutaredoxin: role in reversible protein s-glutathionylation and regulation of redox signal transduction and protein translocation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15706083" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020